Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The simulation of heavy element nucleosynthesis requires input from yet-to-be-measured nuclear properties. The uncertainty in the values of these off-stability nuclear properties propagates to uncertainties in the predictions of elemental and isotopic abundances. However, for any given astrophysical explosion, there are many different trajectories, i.e., temperature and density histories, experienced by outflowing material, and thus different nuclear properties can come into play. We consider combined nucleosynthesis results from 460,000 trajectories from a black hole accretion disk and find the spread in elemental predictions due solely to unknown nuclear properties to be a factor of a few. We analyze this relative spread in model predictions due to nuclear variations and conclude that the uncertainties can be attributed to a combination of properties in a given region of the abundance pattern. We calculate a cross-correlation between mass changes and abundance changes to show how variations among the properties of participating nuclei may be explored. Our results provide further impetus for measurements of multiple quantities on individual short-lived neutron-rich isotopes at modern experimental facilities.more » « less
-
Single-cell genomics technologies are ushering in a new research era. In this review, we summarize the benefits and current challenges of using these technologies to probe the transcriptional regulation of plant development. In addition to profiling cells at a single snapshot in time, researchers have recently produced time-resolved datasets to map cell responses to stimuli. Live-imaging and spatial transcriptomic techniques are rapidly being adopted to link a cell's transcriptional profile with its spatial location within a tissue. Combining these technologies is a powerful spatiotemporal approach to investigate cell plasticity and developmental responses that contribute to plant resilience. Although there are hurdles to overcome, we conclude by discussing how single-cell genomics is poised to address developmental questions in the coming years.more » « less
-
Abstract We simulate a black hole accretion disk system with full-transport general relativistic neutrino radiation magnetohydrodynamics for 1.2 s. This system is likely to form after the merger of two compact objects and is thought to be a robust site ofr-process nucleosynthesis. We consider the case of a black hole accretion disk arising from the merger of two neutron stars. Our simulation time coincides with the nucleosynthesis timescale of ther-process (∼1 s). Because these simulations are time-consuming, it is common practice to run for a “short” duration of approximately 0.1–0.3 s. We analyze the nucleosynthetic outflow from this system and compare the results of stopping at 0.12 and 1.2 s. We find that the addition of mass ejected in the longer simulation as well as more favorable thermodynamic conditions from emergent viscous ejecta greatly impacts the nucleosynthetic outcome. We quantify the error in nucleosynthetic outcomes between short and long cuts.more » « less
-
The generation of exciton–polaritons through strong light–matter interactions represents an emerging platform for exploring quantum phenomena. A significant challenge in colloidal nanocrystal-based polaritonic systems is the ability to operate at room temperature with high fidelity. Here, we demonstrate the generation of room-temperature exciton–polaritons through the coupling of CdSe nanoplatelets (NPLs) with a Fabry–Pérot optical cavity, leading to a Rabi splitting of 74.6 meV. Quantum–classical calculations accurately predict the complex dynamics between the many dark state excitons and the optically allowed polariton states, including the experimentally observed lower polariton photoluminescence emission, and the concentration of photoluminescence intensities at higher in-plane momenta as the cavity becomes more negatively detuned. The Rabi splitting measured at 5 K is similar to that at 300 K, validating the feasibility of the temperature-independent operation of this polaritonic system. Overall, these results show that CdSe NPLs are an excellent material to facilitate the development of room-temperature quantum technologies.more » « less
-
On 2023 May 29, the LIGO-Virgo-KAGRA Collaboration observed a compact binary coalescence event consistent with a neutron star–black hole merger, though the heavier object of mass $$2.5-4.5\, {\rm M}_{\odot }$$ would fall into the purported lower mass gap. An alternative explanation for apparent observations of events in this mass range has been suggested as strongly gravitationally lensed binary neutron stars. In this scenario, magnification would lead to the source appearing closer and heavier than it really is. Here, we investigate the chances and possible consequences for the GW230529 event to be gravitationally lensed. We find this would require high magnifications and we obtain low rates for observing such an event, with a relative fraction of lensed versus unlensed observed events of $$2\times 10^{-3}$$ at most. When comparing the lensed and unlensed hypotheses accounting for the latest rates and population model, we find a $1/58$ chance of lensing, disfavouring this option. Moreover, when the magnification is assumed to be strong enough to bring the mass of the heavier binary component below the standard upper limits on neutron star masses, we find high probability for the lighter object to have a subsolar mass, making the binary even more exotic than a mass-gap neutron star–black hole system. Even when the secondary is not subsolar, its tidal deformability would likely be measurable, which is not the case for GW230529. Finally, we do not find evidence for extra lensing signatures such as the arrival of additional lensed images, type-II image dephasing, or microlensing. Therefore, we conclude it is unlikely for GW230529 to be a strongly gravitationally lensed binary neutron star signal.more » « less
An official website of the United States government
